Tesla Stock Price Prediction With Machine Learning Using Graphite Note

Hrvoje Smolic
Co-Founder, CEO, Graphite Note
-
16/03/2022

Notice: Undefined index: title in /home/graphite/public_html/wp-content/plugins/easy-table-of-contents/includes/class.widget-toc.php on line 328

Notice: Undefined index: highlight_color in /home/graphite/public_html/wp-content/plugins/easy-table-of-contents/includes/class.widget-toc.php on line 332

Tesla Stock Price Prediction

At this point in time, I believe that all readers of this article know who Tesla - the person, inventor - was, and who Tesla - the company - is.

We will focus on the company here. More precisely, on Tesla stock price prediction (TSLA), by using Graphite Note and its time-series no-code machine learning Model.

Tesla's mission is to accelerate the world's transition to sustainable energy. It was founded in 2003 by a group of engineers. They wanted to prove that people didn't need to compromise to drive electric cars. Meaning, electric vehicles can be better, quicker, and more fun to drive than gasoline or diesel-based cars.

Dataset for Tesla Stock Price Prediction

Our goal is to predict the future stock price, based on historical data. It is easy to pull historical prices from publicly available sources. We pulled data for the past 365 days from Yahoo! finance.

Here is historical data, from 2020-01-01 - 2022-09-01:

tesla stock price prediction with machine learning yahoo finance
Image source: Yahoo! finance

We can clearly see all ups and downs in price dynamics.

Let's use this dataset to predict what will the stock price be in the next 365 days. We will start by uploading the dataset into Graphite Note.

In a few mouse clicks, we imported and parsed a CSV file that we previously downloaded from Yahoo! finance. These are the dataset columns:

tesla stock price prediction with machine learning dataset
Dataset columns

We can browse through our dataset rows, filter, or search on the View Data tab. We have seven columns and 673 rows. Since we downloaded more days, it is clear that some dates are missing from the dataset. Graphite's time series Model is built to handle missing dates pretty well.

tesla stock price prediction with machine learning data
Dataset rows

Every uploaded dataset will have a practical Summary tab. It enables, at a glance, to check distributions of numeric columns, the number of null values, and different statistical measures. For example, we can spot that for the closing price (CLOSE column), most dates (157 dates) belong to a bin with price CLOSE values from 217 to 256.

We will use the CLOSE column for our prediction - it is our target column.

It is the last trading price recorded when the market closed on the day.

 

tesla stock price prediction with machine learning data summary
Dataset summary

Time series Forecast

Predicting Stock prices is a great use case of machine learning both for financial time series analysis. You can read more about the time series forecast here. In short, time series forecasting is looking at recorded data over time to forecast or predict what might happen in the next time period, under the assumption that future trends will be similar to historical trends.

That being said, don't use the results here as financial advice. This exercise should only be used to demonstrate the power of no-code machine learning to predict time-series datasets. Machine learning models can only "learn" what we feed them - and in this case, that is a historical pattern.

Time series Forecast Model in Graphite

Now we have our dataset ready, we are ready to create a no-code machine learning model in Graphite. We chose the Timeseries Forecast model:

Tesla Stock Price Prediction model selection
Tesla Stock Price Prediction With Machine Learning Using Graphite Note 28

In Graphite, to build a time series model, you need only 2 columns

  • a target column (what are we predicting?)
  • a date column (with dates, weeks, months, ...)

And that is all.

In the next few mouse clicks, we will define a model Scenario.

Selecting Target column from our dataset:

graphite tesla stock prices model 1
Tesla Stock Price Prediction With Machine Learning Using Graphite Note 29

Selecting date column from the dataset, with the desired forecast horizon of 365 days:

graphite tesla stock prices model 2
Tesla Stock Price Prediction With Machine Learning Using Graphite Note 30

Run the ML Model - Tesla Stock Price Prediction

We will leave all other options on default and run this scenario. Graphite will take a sample of 80% of our data and train several machine learning models. Then, it will test those models on the remaining 20% and calculate relevant model scores. The details about the final best model fit, seasonality, trends, results, and predictions will be available on the Results tab.

After a few seconds, we have our results. On the model fit tab Graphite will show historical data in blue, and predicted data in yellow.

We have our prediction for the next 365 days immediately ready at our disposal. For example, Graphite predicted a price of 353.64 on 2022-12-24.

tesla stock price prediction with machine learning model performance
Tesla stock price prediction

We can now examine further analysis to understand the model and model fit better. A clear changepoint in global trend was detected in the data during November 2021. We also see the details about minimum and maximum data points:

tesla stock price prediction with machine learning model trend
general trend in data

It is always interesting to see what seasonality was detected in historical data. This kind of information can be very valuable in eCommerce and Retail as well, for example.

In our case, there are 2 seasonal patterns detected - weekly and yearly seasonality.

Based on training the model on the historical data of TSLA stock prices, it seems that the highest closing prices occur on Saturdays and Sundays, and the lowest is on Fridays.

tesla stock price prediction with machine learning model weekly
weekly seasonality

Moreover, the price seems to be highest in January, and lowest in June - regarding yearly seasonality detected.

But bear in mind that we had only less than three years worth of data - so that is not a piece of very reliable information. If we trained the model on 5, 6 years of data - then yearly seasonality will have a much bigger weight.

tesla stock price prediction with machine learning model yearly
yearly seasonality

Graphite also tried to detect if USA holidays had any correlation with prices going up or down.

It is potentially exciting information that on 11 Nov (Veteran's day), it detected the most significant negative impact on the price. The last day of the year has the most important positive effects for the price.

tesla stock price prediction with machine learning model holidays
holiday effects

Conclusion

I hope that this helped you understand how easy it is to train models in a no-code machine learning software like Graphite Note. With just a few mouseclicks, we were able to predict the stock price, and analyze seasonality, trends, and patterns in data.

You can explore all other Models here. Feel free to train your own machine learning model on any dataset with the same ease, or schedule a demo if you need any help or have any questions.

Hope you enjoyed it!


🤔 Want to see how Graphite Note works for your AI use case? Book a demo with our product specialist!

You can explore all Graphite Models here. This page may be helpful if you are interested in different machine learning use cases. Feel free to try for free and train your machine learning model on any dataset without writing code.

Disclaimer

This blog post provides insights based on the current research and understanding of AI, machine learning and predictive analytics applications for companies.  Businesses should use this information as a guide and seek professional advice when developing and implementing new strategies.

Note

At Graphite Note, we are committed to providing our readers with accurate and up-to-date information. Our content is regularly reviewed and updated to reflect the latest advancements in the field of predictive analytics and AI.

Author Bio

Hrvoje Smolic, is the accomplished Founder and CEO of Graphite Note. He holds a Master's degree in Physics from the University of Zagreb. In 2010 Hrvoje founded Qualia, a company that created BusinessQ, an innovative SaaS data visualization software utilized by over 15,000 companies worldwide. Continuing his entrepreneurial journey, Hrvoje founded Graphite Note in 2020, a visionary company that seeks to redefine the business intelligence landscape by seamlessly integrating data analytics, predictive analytics algorithms, and effective human communication.

Connect on LinkedIn
Connect on Medium

Related Posts

5 Simple Steps for Predicting Customer Churn in Subscription-based Businesses
Predicting Customer Churn Today, most services are digitalized, and data is more and more available. Companies......
Read More
4 Tactics to Personalize Content for Better User Engagement Using AI
Discover how AI can revolutionize content personalization and boost user engagement with these four tactics....
Read More
6 Steps to Turn Raw Data into Actionable Insights Without Coding
Discover how to transform raw data into valuable insights without any coding skills....
Read More
8 Methods to Improve Your Business Outcomes with Precision Predictions
Discover 8 powerful methods to skyrocket your business outcomes by harnessing the power of precision predictions....
Read More
1 2 3 5

Now that you are here...

Graphite Note simplifies the use of Machine Learning in analytics by helping business users to generate no-code machine learning models - without writing a single line of code.

If you liked this blog post, you'll love Graphite Note!
linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram